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Universal scaling and nonlinearity in surface layer fragmentation
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~Received 9 August 1999!

We analyze disordered one-dimensional bond-network models and investigate the influence of nonlinear
force-elongation relationsF}uxum on the fragmentation of coatings under tension. We aim to elucidate the
interplay between the nonlinear forces and the random failure thresholds of the bonds. After an initial stage, the
mean fragment lengtĥL& scales with the applied strain«, ^L&}«2a, wherea5m/(m11) for weakly disor-
dered anda5m/(m12) for strongly disordered coatings.

PACS number~s!: 05.40.-a, 46.65.1g, 46.50.1a
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Breakage phenomena range from the damage of ma
scopic objects such as the destruction of glass window
the failure on smaller length scales, e.g., the formation
crazes in poly~methylmethacrylate! ~PMMA!. Because of the
technological and scientific interest in fractures, the sub
has a long history; recently breaking of coatings has attra
new attention@1–16#, particularly the fragmentation of thin
brittle films under uniaxial tension. Here cracks once nuc
ated grow perpendicular to the stress direction and fo
separate, nearly rectangular fragments, see, e.g., Ref.@12#.
This process can be described by a one-dimensional m
@17–20#, which allows to a great extent an analytical tre
ment. We focus on the mean fragment length^L& as a func-
tion of the strain« to which the substrate is subjected.

Recent studies@17–20# have investigated the dependen
of ^L& on « based onlinear force-elongation relations, an
have revealed a scaling law:

^L&}«2a. ~1!

However, for many materials~such as polymers! linear be-
havior occurs only in a very restricted range of deformatio
Thus in this paper we analyze the influence ofnonlinear
force-elongation relations on fragmentation. Surprisingly
turns out that̂ L& also scales when the forces are nonline

To fix the ideas, we start from a one-dimensional mo
@17–22#, see Fig. 1. The coating consists ofN nodes con-
nected byN21 breakable springs of equilibrium lengthl eq.
Under stress the bonds elongate, which leads to the resto
force f k5duk due to thekth surface layer spring;d being the
elastic constant anduk the spring’s elongation. The interac
tion between coating and substrate is modeled by spring
elongation vk and ~non-necessarily Hookean! restoring
forcesFk(vk). These springs are anchored to the substrat
equidistant nodes. For better illustration, in Fig. 1 the bon
between coating and substrate are shifted vertically. If
distance between the substrate’s nodes increases froml eq to
l eq1D l ~being a relative elongation of«5D l / l eq!, the bonds
in the coating expand. Increasing« continuously correspond
to stretching the substrate uniaxially. In order to mimic t
occurrence of cracks in the coating, we assume that thekth
surface layer bond breaks irreversibly, when its elongat
uk exceeds a random failure thresholdub(k). The thresholds
ub(k) are chosen randomly at the beginning of the fragm
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tation process and then are fixed~quenched disorder!; they
obey a probability distribution, here denoted byp(ub).

From the arrangement depicted in Fig. 1 a differential
equation for the elongationsv(k)[vk follows. In each
‘‘loop’’

D l 5« l eq5vk2vk111uk ~2!

holds. Subtracting from Eq.~2! the corresponding equatio
for k21 leads to

vk1122vk1vk215uk2uk215
1

d
~ f k2 f k21!, ~3!

where we usedf k5duk . The equilibrium condition for the
kth layer node is given~in our scalar picture! by

Fk5 f k2 f k21 . ~4!

Going to a continuous description, one can replace the l
hand side of Eq.~3! by v9(k)[d2v/dk2, so that we are led
to

v9~k!5
F~k!

d
. ~5!

At the boundaries the forcesf k vanish, i.e.,f 05 f N50; we
may also setu05uN50. From this and Eq.~2! one has as
boundary conditionsv8(1/2)5v8(N11/2)52« l eq.

Previous studies on the fragmentation of coatin
@17,18,20# and of fibers@23,24# have focused on purely lin

FIG. 1. Bond-network model for fragmentation of coatings u
der uniaxial tension. Hered and D denote the elastic constants o
the two types of springs andl eq is the equilibrium length. The
elongations of the bonds are denoted byuk ~d bond!, respectively,
vk ~D bond!. The bonds between coating and substrate are shi
vertically for better illustration.
3216 ©2000 The American Physical Society
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ear force-elongation relations, respectively, on random f
networks with linear current-voltage relations@2#. In this
context we have previously found that linear on
dimensional~1D! systems reproduce the scaling of linear 2
objects quite satisfactorily@19#. Here, in this paper, we in
troduce quite general, nonlinear forms for the forcesF(v)
[Fk@v(k)#; we assume that the interaction between coat
and substrate is given by a force-elongation relation of
form

F~v !5D sgn~v !S uvu1
uvum

b D , ~6!

whereD, b, andm are positive parameters (m.1). Equation
~6! may be viewed as ‘‘stress-hardening,’’ as occurs, e.g.
networks containing nonextensible elements, finite ext
sible nonlinear elasticity~FENE!.

To obtain the elongationsu(k)[uk , we consider that
from Eqs.~3! and ~4! we have in the continuum

F~k!5d@u~k!2u~k21!#'d@u8~k21/2!# ~7!

for the kth layer node, which yields

u~k!5
1

d E0

k

F~n11/2!dn. ~8!

We can now readily evaluateu(k) for not too early stages o
fragmentation. Because of symmetry, it suffices to cons
only the left half of the coating, wherev(k)>0 holds.
Hence, from Eq.~5! also v9(k)>0 for kP@1/2,(N11)/2#
follows. Therefore the maximal slope ofv(k) ~largest abso-
lute value! is given at 1/2 withv8(1/2)52« l eq ~boundary
condition! and its minimal slope is attained at (N11)/2 with
v8@(N11)/2#'uprob2« l eq, as follows from Eq.~2! with
u(N/2)'uprob, whereuprob is an estimate for̂ u(N/2)& at
breakage. Using these results, we can estimatev(k) in the
interval @1/2,(N11)/2# by considering the lower and the up
per bound forv(k):

2~« l eq2uprob!@k2~N11!/2#

<v~k!<2« l eq@k2~N11!/2#. ~9!

Equation ~9! is the linear approximation ofv(k) near (N
11)/2, wherev8@(N11)/2# is estimated by2« l eq, respec-
tively uprob2« l eq.

The relative deviation of these two limits isDv/v
5uprob/(« l eq), so that for « large v(k) is nearly v(k)5
2« l eq@k2(N11)/2#. Furthermore thev(k) get to be large
in the later stages of fragmentation, so that theuvum term
dominates in Eq.~6!. Therefore we find from Eq.~8!

u~k!'Nm11«mAgm~z!, ~10!

where we setz5k/N21/2 and gm(z)512u2zum11. The
constantA is given byl eq

m/@j2b(m11)2m11# and the corre-
lation length j is defined byj5Ad/D. From Eq. ~10! it
follows that an increase in the nonlinearity~i.e., in m!
changesu(k) from a parabolic shape~for m51! to a plateau
e
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shape~for m very large!. These considerations are valid bo
for the initial system and, after replacingN by L, for subse-
quent fragments of lengthL.

Equation~10! leads to a rough estimate for the occurren
of cracks for large«. If a bond breaks, we haveu(N/2)
'uprob, so that

«5S uprob

A D 1/m

N2~m11!/m. ~11!

holds.
Now let us turn to the fragmentation process. The bon

elongationu(k,L)[uk within a fragment of lengthL attains
its maximum in the middle of each segment. The maxim
of u(k) increases with larger« and larger fragment lengthL.
For a fixed value of« larger fragments break more readi
than shorter ones. We thus introduceLc(«) as the length of a
fragment, whose probability to stay intact under strain« is
1/2. Now we assume thatLc(«) is the only relevant length
scale and hence that^L(«)& is proportional toLc(«). In the
following, we show howLc(«) is obtained. We denote by
p(ub) the distribution of the local failure thresholds~ranging
from umin to umax! and byFcu(ub)5*0

ubp(u)du the corre-
sponding cumulative distribution function. The probabilityP
for a fragment of lengthL to stay intact, until the substrate’
strain reaches«, is

P5@12Fcu„u~1!…#3@12Fcu„u~2!…#

3¯3@12Fcu„u~L21!…#

5expH (
k51

L21

ln@12Fcu„u~k!…#J . ~12!

As discussed in Ref.@22#, only the behavior ofFcu(ub) for
ub close toumin is essential, most of theFcu@u(k)# are small
compared to one, and one has forP by reverting to integra-
tion and expanding the logarithm:

P'expH 2E
0

L

Fcu@u~k,L !#dkJ . ~13!

InsertingP51/2, we are led to

E
0

Lc
Fcu@u~k,Lc!#dk5 ln 2. ~14!

Moreover the change of variablez5k/Lc21/2 yields

LcE
21/2

1/2

Fcu@Lc
m11«mAgm~z!#dz5 ln 2, ~15!

wheregm(z) is a function ofz only. From Eq.~15! the scal-
ing laws for different forms of the probability distributio
p(ub) follow. Knowing that the behavior ofp(ub) close to
umin determines the fragmentation kinetics, we assume
following power-law forms forp(ub):

p~ub!5H k~ub2umin!
b for umin<ub<umin1W

0 otherwise
~16!

with k5(b11)W2(b11) andb>0. Aroundumin Eq. ~16! is
representative for many other forms in use, e.g., the Wei
distribution. In the case of weak disorder, i.e., for sm
W/umin or b large, p(ub) is centered in a small domain o
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ub ; then the integral in Eqs.~14! and~15! is nonzero only if
Lc

m11«mAgm(0)'umin . Thus we find

Lc
m11}«2m, ~17!

i.e.,

^L&}Lc}«2m/~m11!. ~18!

The casem51, corresponding to a linear spring, reproduc
the previously established result^L&}e21/2 for the hierarchi-
cal fragmentation process@17,18#. Interestingly, not only in
the case of purely linear bonds, but also for nonlinear bo
exact scaling solutions exist. In the case of strong disor
namely, largeW/umin ~e.g., umin50!, and b50 leading to
p(ub)51/W for 0<ub<W, we getFcu(ub)5ub /W, andLc
is given by

Lc
m12«m

AJ

W
5const, ~19!

with J5*21/2
1/2 gm(z)dz, from which it immediately follows

that

^L&}Lc}«2m/~m12!. ~20!

Equation ~20! reproduces the strong disorder result^L&
}«21/3 for linear springs in the case ofb50 @17,18#. The
probability distributions withumin50 starting in a power-law
fashion for small values ofub , i.e., p(ub)}ub

b , lead to
Fcu(ub)}ub

b11, and thus

Lc~Lc
m11«m!b115const, ~21!

from which a of Eq. ~1! follows readily:

a5
m~b11!

~m11!~b11!11
. ~22!

The two previous results, Eqs.~18! and~20!, are obtained in
this general case as the limits ofb50 ~flat distribution! or
b→` ~concentrated distribution!. From Eq.~22! we see that
the power-law exponent simply is a function of the nonl
earity characterized bym and the disorder. No other param

FIG. 2. The function̂ L(«)& in homogeneous systems for di
ferent values ofm. The parameters areN5215, j2/N250.1, b56
3104, ub50.008, andl eq51. The m values are indicated in the
figure.
s

s
r,

eters, such as the elastic constants of the materials, influ
a. Because ofm.1 the power-law exponent ranges betwe
1/3 and 1, depending on the values ofm and b. For linear
bonds (m51) the maximum value fora is 1/2.

The onset of the scaling regime is given by a crosso
length z for ^L&. The mean fragment lengtĥL(«)& scales,
when the elongationsv(k) are a linear function ofk. For
small segments, the deviation of the linear approximat
Eq. ~9! and the solutionv(k) at 1/2 is roughly given by
v9(1/2)N2/8. If this deviation is small with respect to
v(1/2)'N« l eq/2, then the crossover takes place. Defini
the crossover by, sayNv9(1/2)/(4« l eq)51/8, we find from
Eq. ~5!, neglecting on the right-hand side the linear term
v,

Nv9~1/2!

4« l eq
5

Nm11~« l eq!
m21

j2b2m12 5
1

8
. ~23!

Using Eq.~11! we obtain for the crossover lengthz

z5S j2b

@2~m11!uprob#
m21D 1/~m11!

. ~24!

FIG. 3. Mean fragment lengtĥL(«)& in a strongly disordered
system (umin50,b50) for two sets of parameters. Each curve
obtained by simulations with ten different realizations of the pro
ability distribution Eq.~16!. The slopes of the dashed lines are~a!
3/5 and~b! 5/7. Parameters:~a! N5215, j2/N25105, b5120, W
51, m53, and l eq51. ~b! N5215, j2/N25103, b5120, W50.5,
m55, andl eq51.
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Hence the scaling regime sets in as soon as^L& gets smaller
thanz.

In order to exemplify these findings, we have simulat
the fragmentation process for various sets of parameter
systems withN5215532 768 bonds. We solve numerical
Eq. ~5! with the given boundary conditions. Starting with«
50, we increase incrementally«. At each step the elonga
tions of the surface layer bonds are given by Eq.~2! in the
continuous limit, which isu(k)5« l eq1v8(k11/2). If u(k)
exceeds its specific failure thresholdub(k), the kth layer
bond is irreversibly removed. Then for each new fragm
Eq. ~5! is solved again with the incrementally increased v
ues for«.

The results of the numerical simulations are shown
Figs. 2 and 3. Figure 2 shows the mean fragment length^L&
in a homogeneous system@W50 in Eq.~16!# for the param-
etersub50.008,j2/N250.1, N5215, and b563104. The
nonlinear force-elongation-relationF(v) is given by Eq.~6!
with m53, 5, 7, 9, respectively 25. Least-squares fits of
curves in the final stage~« large! show that^L(«)& decays
indeed algebraically with the values ofa given by Eq.~18!.
Moreover we have also performed simulations for two s
of parameters in the strongly disordered case, namely,
~16! with umin50 andb50. The results are plotted in Fig.
for the parameters~a! W51, N5215, j2/N25105, b5120,
m53 and for the parameters~b! W50.5, N5215, j2/N2
et
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5103, b5120, m55. For each set of parameters we ha
chosen ten different realizations of the probability distrib
tion, so that each of the curves in Fig. 3 corresponds to
realizations. Once again the mean fragment length scale
large values of the strain. From a least-squares fit we ob
for ~a! a50.594 and for~b! a50.712; the corresponding
slopes are depicted in Fig. 3 as dashed lines, and the va
may be compared to the analytical results 3/550.600 and
5/7'0.714. In conclusion, the simulations agree quant
tively with our analytical considerations.

In summary, we have studied the influence of nonline
forces on the fragmentation of coatings under uniaxial t
sion. Our analysis shows that the mean fragment length^L&
versus applied strain« decays as a power law,̂L&
}«2m(b11)/@(m11)(b11)11#, wherem is the highest nonvan
ishing power in the force-elongation relation andb charac-
terizes the lower end of the failure threshold distribution. F
large values of the strain, this power law is exact and o
depends on two parameters. Hence the~mesoscopic! deter-
mination of ^L& is a powerful tool in order to determine th
microscopic behavior of forces acting in surface layer fra
mentation.
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